156 research outputs found

    Accurate Evolutions of Orbiting Binary Black Holes

    Get PDF
    We present a detailed analysis of binary black hole evolutions in the last orbit and demonstrate consistent and convergent results for the trajectories of the individual bodies. The gauge choice can significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge-dependent discrepancies by examining the convergence limit. We illustrate these results using an initial data set recently evolved by Brügmann et al. [Phys. Rev. Lett. 92, 211101 (2004)]. For our highest resolution and most accurate gauge, we estimate the duration of this data set's last orbit to be approximately 59MADM

    EphA2/Ephrin-A1 Mediate Corneal Epithelial Cell Compartmentalization via ADAM10 Regulation of EGFR Signaling.

    Get PDF
    Purpose: Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal-corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium. This reciprocal pattern led us to assess the role of ephrin-A1 and EphA2 in limbal-corneal epithelial boundary organization. Methods: EphA2-expressing corneal epithelial cells engineered to express ephrin-A1 were used to study boundary formation in vitro in a manner that mimicked the relative abundance of these juxtamembrane signaling proteins in the limbal and corneal epithelium in vivo. Interaction of these two distinct cell populations following initial seeding into discrete culture compartments was assessed by live cell imaging. Immunofluoresence and immunoblotting was used to evaluate the contribution of downstream growth factor signaling and cell-cell adhesion systems to boundary formation at sites of heterotypic contact between ephrin-A1 and EphA2 expressing cells. Results: Ephrin-A1-expressing cells impeded and reversed the migration of EphA2-expressing corneal epithelial cells upon heterotypic contact formation leading to coordinated migration of the two cell populations in the direction of an ephrin-A1-expressing leading front. Genetic silencing and pharmacologic inhibitor studies demonstrated that the ability of ephrin-A1 to direct migration of EphA2-expressing cells depended on an a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and epidermal growth factor receptor (EGFR) signaling pathway that limited E-cadherin-mediated adhesion at heterotypic boundaries. Conclusions: Ephrin-A1/EphA2 signaling complexes play a key role in limbal-corneal epithelial compartmentalization and the response of these tissues to injury

    Modelling the underlying principles of human aesthetic preference in evolutionary art

    Get PDF
    Our understanding of creativity is limited, yet there is substantial research trying to mimic human creativity in artificial systems and in particular to produce systems that automatically evolve art appreciated by humans. We propose here to study human visual preference through observation of nearly 500 user sessions with a simple evolutionary art system. The progress of a set of aesthetic measures throughout each interactive user session is monitored and subsequently mimicked by automatic evolution in an attempt to produce an image to the liking of the human user

    Local power outages, heat, and community characteristics in New York City

    Full text link
    Electrical power outages are of increasing interest to US urban scholars, government officials and stakeholders, as they have increased in number and duration with significant health and economic, among other, impacts. This analysis examines reports of power outages in New York City in relation to socioeconomic and health characteristics of neighborhoods. Using the city’s 311-call database we examine complaint calls for power outages from 2014 to 2022. While 311-calls for power outages occur all year long, volume trended higher during the warmer months (June, July and August), and as minimum daily temperatures exceeded 20 °C (68°F), the number of calls increased dramatically. Spatial clusters of high call areas were in Census tracts with high energy burdens, lower-income households, and high percentages of people of color. Furthermore, we found the higher call areas were associated with higher vulnerability to heat-exacerbated deaths. As climate change is expected to raise temperatures and increase the frequency and intensity of heat waves around the world, and as power outages are becoming more common, these findings will help to provide guidance for adaptation and energy reliability policies in New York City and have implications for other cities globally

    MAGGnet: an international network to foster mitigation of agricultural greenhouse gases.

    Get PDF
    Research networks provide a framework for review, synthesis and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a GHG research network referred to as MAGGnet (Managing Agricultural Greenhouse Gases Network) was established within the Croplands Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA). With involvement from 46 alliance member countries, MAGGnet seeks to provide a platform for the inventory and analysis of agricultural GHG mitigation research throughout the world. To date, metadata from 315 experimental studies in 20 countries have been compiled using a standardized spreadsheet. Most studies were completed (74%) and conducted within a 1-3-year duration (68%). Soil carbon and nitrous oxide emissions were measured in over 80% of the studies. Among plant variables, grain yield was assessed across studies most frequently (56%), followed by stover (35%) and root (9%) biomass. MAGGnet has contributed to modeling efforts and has spurred other research groups in the GRA to collect experimental site metadata using an adapted spreadsheet. With continued growth and investment, MAGGnet will leverage limited-resource investments by any one country to produce an inclusive, globally shared meta-database focused on the science of GHG mitigation

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    9 Pág.Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments.G.V., R.B. and S.H. acknowledge FORMAS grants 2018-02872 and 2018-02321. TMB acknowledges USDA AFRI grant 2017-67013-26254. LTEs managed by SRUC were supported by the Scottish Government RESAS Strategic Research Programme under project D3-, Healthy Soils for a Green Recovery. Swedish LTEs were funded by the Swedish University of Agricultural Sciences (SLU). We thank the Lawes Agricultural Trust and Rothamsted Research for data from the e-RA database. The Rothamsted Long-term Experiments National Capability (LTE-NC) was supported by the UK BBSRC (Biotechnology and Biological Sciences Research Council, BBS/E/C/000J0300) and the Lawes Agricultural Trust. The Woodslee site was supported by the Agro-Ecosystem Resilience Program (Agriculture & Agri-Food Canada) and field management provided by field crews over 6 decades is appreciated. La Canaleja LTE (Spain) was supported by RTA2017-00006-C03-01 project (Ministry of Science and Innovation. El Encín LTEs were supported by Spanish Ministry of Economy and Competitiveness funds (projects AGL2002-04186-C03-01.03, AGL2007-65698-C03-01.03, AGL2012-39929-C03-01 of which L. Navarrete was the P.I). R.A., A.G.D. and E.H.P. are also grateful to all members of the Weed Science Group from El Encín Experimental Station for their technical assistance in managing the experiments. The Brody/Poznan University of Life Sciences long-term experiments were funded by the Polish Ministry of Education and Science. We acknowledge the E-Obs dataset from the EU-FP6 project UERRA (http://www.uerra.eu) and the Copernicus Climate Change Service, and the data providers in the ECA&D project (https://www.ecad.eu/).Peer reviewe

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments
    corecore